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SUMMARY

The human brain has evolved for group living [1]. Yet
we know so little about how it supports dynamic
group interactions that the study of real-world social
exchanges has been dubbed the ‘‘dark matter of
social neuroscience’’ [2]. Recently, various studies
have begun to approach this question by comparing
brain responses of multiple individuals during a vari-
ety of (semi-naturalistic) tasks [3–15]. These experi-
ments reveal how stimulus properties [13], individual
differences [14], and contextual factors [15] may un-
derpin similarities and differences in neural activity
across people. However, most studies to date suffer
from various limitations: they often lack direct face-
to-face interaction between participants, are typi-
cally limited to dyads, do not investigate social dy-
namics across time, and, crucially, they rarely study
social behavior under naturalistic circumstances.
Here we extend such experimentation drastically,
beyond dyads and beyond laboratory walls, to
identify neural markers of group engagement during
dynamic real-world group interactions. We used
portable electroencephalogram (EEG) to simulta-
neously record brain activity from a class of 12
high school students over the course of a semester
(11 classes) during regular classroom activities
(Figures 1A–1C; Supplemental Experimental Pro-
cedures, section S1). A novel analysis technique to
assess group-based neural coherence demon-
strates that the extent to which brain activity is syn-
chronized across students predicts both student
class engagement and social dynamics. This sug-
gests that brain-to-brain synchrony is a possible
neural marker for dynamic social interactions, likely
driven by shared attention mechanisms. This study
validates a promising new method to investigate
Current Biology 27, 1375–1380,
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the neuroscience of group interactions in ecologi-
cally natural settings.

RESULTS AND DISCUSSION

The classroom is an ideal starting point for real-world neurosci-

ence: it provides a practically important and ecologically natural-

istic context but also a semi-controlled environment, governed by

a sequence of activities led by a teacher. This allowed us to mea-

sure brain activity and behavior in a systematic fashion over the

courseof a full semester as students engaged in a seriesof prede-

termined class activities (repeated across 11 50-min classes, stu-

dents followed lectures, watched instructional videos, and partic-

ipated in group discussions). We explored the hypothesis that

synchronized neural activity across a group of students predicts

(and possibly underpins) classroom engagement and social

dynamics. When students feel connected or engaged with the

material or each other, are their brains in fact ‘‘in sync’’ in a formal,

quantifiable sense? To investigate these questions, we used

low-cost portable electroencephalogram (EEG) systems ([16];

Supplemental Experimental Procedures, section S2) paired with

a novel analysis technique to characterize the synchronization of

brain activity between individuals: total interdependence (TI;

[17]; Supplemental ExperimentalProcedures, sectionS3). Figures

1C and 1D lay out how TI is operationalized.

We focused on the relationship between TI and classroom

engagement, on the one hand, and social dynamics, on the

other—both of which are critical for student learning [18]. Class-

room engagement was quantified as student appreciation

ratings of different teaching styles (Figure 1B) and student day-

by-day self-reported focus. Classroom social dynamics were

quantified in terms of socially relevant personality traits (group

affinity [19, 20] and empathy [21]) and as social closeness during

class interactions (between students and with the teacher; see

Supplemental Experimental Procedures, section S1 for details).
Brain-to-Brain Synchrony and Class Engagement
We first examined the relationship between brain-to-brain

synchrony (indexed by TI) and student ratings of four different
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Figure 1. Experimental Setup, Procedure, and Rationale

(A) Timeline of the experiment. The fall semester started with a crash course in neuroscience, followed by 11 recording days distributed over a 3-month period. In

the spring semester, students designed, executed, and carried out their own original research projects (see Supplemental Experimental Procedures, section S1).

(B) Sample experimental procedure of a typical recording day: EEG activity was recorded during video, lecture, and discussion teaching styles separately, which

were consistently carried out across all 11 recording days. Other tasks were alternated (Supplemental Experimental Procedures, section S1). TI values were

averaged for each teaching style separately (marked in red; Supplemental Experimental Procedures, section S3).

(C) Illustration of experimental setup in the classroomwith 12 students wearing the EMOTIV EPOC headset (Supplemental Experimental Procedures, section S2).

These portable devices offer a rich opportunity to involve students both as participants and as experimenters (Supplemental Experimental Procedures,

section S1).

(D) Brain-to-brain synchrony (TI) was computed by taking each student’s raw EEG signal, decomposing it into frequency bins (1–20 Hz, 0.25 Hz resolution), and

calculating the sum of the inter-brain coherence between pairs of students for each bin. Thus, TI quantifies the inter-brain coherence across the frequency

spectrum, allowing a data-driven identification of the brain signals of interest (see Figure S3 for further details).

(E) TI enables us to analyze brain-to-brain synchrony at multiple socially relevant levels of investigation: group synchrony (averaging TI values across all possible

pairs within a group) (i); student-to-group synchrony (averaging TI values between a given student and each of his/her peers) (ii); and student-to-student syn-

chrony (TI values between pairs of students) (iii).

See also Figure S1.
teaching styles over time. Students rated each segment after

every recording and were also asked to provide overall ratings

of each teaching style after the semester was over (Figures 1A

and 1B; Supplemental Experimental Procedures, section S1).

Significant main effects of teaching style were observed on

both student ratings (repeated-measures two-way ANOVA with

teaching style and time as main factors [see Supplemental

Experimental Procedures, section S4 for details]: day-by-day

ratings: F(3,24) = 16.85; p < 10�5; post-semester ratings:

F(3,27) = 33.29; p < 10�8) and brain-to-brain synchrony (group

synchrony: F(3,12) = 5.93; p < 0.0005; student-to-group syn-

chrony: F(3,27) = 5.94; p < 0.005; see Supplemental Experi-

mental Procedures, section S2). Overall, students preferred

watching videos and engaging in group discussions over

listening to the teacher reading aloud or lecturing (Figure 2A,

left panel), an effect that was even more pronounced in the
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post-semester ratings (Figure 2A, right panel). A strikingly similar

pattern was observed for group synchrony (Figure 2B, left) as

well as student-to-group synchrony (Figure 2B, right; see Table

S2 for detailed statistics). Student-to-group synchrony exhibited

a strong positive correlation with student ratings: the higher

the post-semester student ratings, the stronger the student-to-

group synchrony averaged across days (r = .61, p < 0.0001; Fig-

ure 2C; Figure 2A, right shows the same data, separated by con-

dition and averaged across subjects). Day-by-day ratings and

group synchrony were not correlated.

Is Brain-to-Brain Synchrony Purely Stimulus Driven?
How much of brain-to-brain synchrony is explained by ‘‘mere’’

stimulus attributes (i.e., teaching style; cf. [6]), and how much

do individual differences (cf. [7]) contribute to synchrony? To

explore this, we performed a number of multiple regression



Figure 2. Independent Contributions of

Teaching Style and Individual Differences

to Brain-to-Brain Synchrony

(A) Average day-by-day (left) and post-semester

(right) student appreciation ratings for four teach-

ing styles: reading aloud, video, lecture, and

discussion sessions. Error bars reflect standard

errors over students.

(B) Average group TI (left) and student-to-group TI

(right) for four teaching styles. Error bars reflect

standard errors over days (left) and students (right).

(C) Post-semester ratings, while exhibiting a main

effect on student-to-group synchrony, did not

independently predict student-to-group TI over

teaching style.

(D–F) Student focus (D), group affinity (E), and

empathy (F) did each predict student-to-group TI

in addition to teaching style.

Trend lines are displayed by teaching style (blue:

discussion and video; yellow: reading aloud and

lecture). All values were normalized to a 0–1 scale

(max-min) for presentation purposes, and each dot

reflects one student’s TI in one of four teaching

styles averaged across days (see Figure S4 for

data further separated by days).

See also Figures S2, S3, and S4 and Tables S1

and S2.
analyses to assess the relationship between TI and a number of

individual variables (ratings, focus, group affinity, and empathic

disposition), with teaching style included as a factor representing

the stimulus attribute (see Supplemental Experimental Proced-

ures, section S3).

Post-semester ratings,whileexhibitingamaineffectonstudent-

to-group synchrony (F(1,220) = 20.79, p < 0.0001), did not inde-

pendently predict synchrony over teaching style (post-semester

ratings: F(1,210) = 2.28, p = 0.1327 and teaching style: F(1,9) =

2.37, p= 0.1581; Figure 2C). Student focus, in contrast, did predict

student-to-group synchrony independent of teaching style: stu-

dents who weremore focused on a given day also showed higher

synchrony for that day (focus: F(1,126) = 4.64, p = 0.0331 and

teaching style: F(1,9) = 29.23, p = 0.0004; Figure 2D).

Next, we examined the relationship between brain-to-brain

synchrony and students’ personality traits, in particular their

group affinity and empathic disposition ([20]; see Supplemental

Experimental Procedures, section S1 for details). Both group

affinity and empathy predicted student-to-group synchrony

independently of teaching style (group affinity: F(1,115) = 5.95,

p = 0.0163 and teaching style: F(1,9) = 12.73, p = 0.0060;

empathy: F(1,115) = 5.71, p = 0.0185 and teaching style:

F(1,9) = 13.53, p = 0.0062).

Together, these findings demonstrate that individual factors

(focus and personality traits) contribute to synchrony above

and beyond the nature of the stimulus itself.
Current
Brain-to-Brain Synchrony and
Classroom Social Dynamics
Our findings suggest that brain-to-brain

synchrony is driven by a combination

of stimulus properties (teaching styles)

and individual differences (student focus,
teaching style preferences, teacher likeability, and personality

traits). However, none of these factors speak directly to whether

the presence of others had an effect on synchrony during class.

For example, empathic disposition affects brain-to-brain similar-

ities even in the absence of others [14].

To address classroom social dynamics directly, we collected

social closeness ratings from students both toward the teacher

and to the other students (Supplemental Experimental Proced-

ures, section S1) and introduced manipulations that either

did or did not involve direct social interaction. To investigate

the effect of the teacher on student-to-group synchrony, we

compared the two teaching styles in which the teacher wasmini-

mally involved (videos) and maximally involved (lectures). Fig-

ure 2D illustrates that, while students varied with respect to their

overall student-to-group synchrony, synchrony was consistently

higher for video than lecture sessions across students (p = 0.007;

see Table S1). This differencewas correlatedwith students’ eval-

uations of the teacher: the more favorable a student’s rating of

the teacher, the smaller that student’s difference in synchrony

between video (where the teacher played no role) and lecture

sessions (where the teacher played an integral role; Figure 2E;

r = 0.72, p = 0.018 for data averaged across days).

We then tested whether pairwise student-to-student syn-

chrony varied as a function of the classroom configuration (in

each class, students were randomly assigned seats by the

experimenters; see Supplemental Experimental Procedures,
Biology 27, 1375–1380, May 8, 2017 1377



Figure 3. Brain-to-Brain Synchrony Predicts Classroom Social Dynamics

(A and B) The difference in student-to-group TI between video and lecture sessions across students (A) (error bars reflect standard errors over days) was

negatively correlated with their ratings of the teacher (B) (r = �.72, p = 0.018; each dot represents one student; TI values are averaged across days; teacher

likeability was recorded once for each student, after the semester was over).

(C) Before class, students sat face-to-face, engaging in eye contact for 2 min with one peer (Supplemental Experimental Procedures, section S1).

(D) An illustration for one student (green circle) of how the face-to-face baseline allowed a comparison of pairwise TI for three types of students: students who sat

adjacent to each other and had engaged in silent eye contact prior to class (adjacent + face-to-face), students who sat next to each other but had not participated

in a face-to-face baseline together (adjacent, no face-to-face), and students who were not sitting next to each other (non-adjacent).

(E) Students showed the highest pairwise synchrony during class with their face-to-face partner compared to the other two student pairings (error bars reflect

standard errors over student pairs).

(F) Pairwise TI is correlated with mutual closeness ratings for adjacent + face-to-face pairs (solid dark green), but not for adjacent, no face-to-face pairs (solid

light green) or non-adjacent pairs (no fill green). Each dot represents one student pair, averaged across teaching styles. All values were normalized to a 0–1 scale

(max-min) for presentation purposes.

See also Figures S2, S3, and S4 and Table S1.
section S1) and student interaction: as illustrated in Figures 1B

and 3C, students engaged in eye contact (face-to-face) with an

assigned peer for 2 min prior to class (see Supplemental Exper-

imental Procedures, section S1 for details). This allowed us

to compare the relationship between pairwise synchrony and

students’ self-reported closeness to each other for three types

of student pairs: students who sat adjacent to each other and

had engaged in silent eye contact prior to class (adjacent +
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face-to-face), students who sat next to each other but had not

participated in a face-to-face baseline together (adjacent, no

face-to-face), and students who were not sitting next to each

other (non-adjacent; illustrated in Figure 3D). Students showed

the highest pairwise synchrony during class with their face-to-

face partner compared to the other two student pairings (Fig-

ure 3E; one-way ANOVA: F(2,102) = 5.66, p = 0.0047). In addi-

tion, brain-to-brain synchrony was correlated with students’



Figure 4. Shared Attention as a Possible Account of Brain-to-Brain

Synchrony

Schematic illustration of a possible joint attention account of brain-to-brain

synchrony. Neural entrainment to an external stimulus (video, teacher, or each

other) is driven by a combination of stimulus properties (shown as arrows

flowing down from ‘‘stimulus’’) and attention (arrows flowing up to the stim-

ulus). Under ‘‘low attention’’ conditions, students’ neural oscillations are not

entrained to an external stimulus (video, teacher, or each other) (i). Under

‘‘shared attention’’ conditions, students’ alpha oscillations are attenuated and

entrained with an engaging external stimulus: a video, the teacher, or each

other (ii). Some students are in a more attentive state, have more socially

engaged personality traits, or have directly interacted, modulating the extent

to which their neural oscillations are entrained with the stimulus (the teacher, a

video, or each other) (iii).
mutual closeness ratings, but exclusively for adjacent + face-to-

face pairs: student pairs who reported higher social closeness to

each other exhibited stronger pairwise brain-to-brain synchrony

during class activities, only if they had engaged in eye contact

prior to class (r = 0.5265, p = 0.0082; solid green dots and solid

line in Figure 3F; note that there was only a marginal main effect

of condition on the TI 3 closeness correlation: F(2,75) = 2.83,

p = 0.0654). In sum, face-to-face interaction prior to class not

only increased brain-to-brain synchrony during class but also

seemed to serve as an ‘‘activator’’ for interpersonal relationship

features: actual joint attention, and not passive co-presence,

predicted student-to-student synchrony.

Shared Attention as a Likely Source of Brain-to-Brain
Synchrony
It is important to emphasize that brain-to-brain synchrony is not

a mechanism in itself. Instead, neural synchrony across partici-

pants is a measurable reflection of the underlying neural compu-

tations that underpin some of the psychological processes under

investigation. To better understand the synchronization effects

we observe, mental constructs like focus, empathy, and close-

ness need to be decomposed into basic psychological pro-

cesses that provide more suitable linking hypotheses to neural

metrics. As already briefly discussed above, the finding that stu-
dent-to-student synchrony is correlated with mutual closeness

ratings during class—but only for pairs of students who had

engaged in eye contact prior to class—aligns with research

suggesting that eye contact sets up a context for joint attention

[22]. Joint attention (shared intentionality) has been proposed to

form a scaffold for social cognition in a range of social-psycho-

logical contexts, including development [21, 23], and provides

a plausible account for prior findings showing an increase in

brain-to-brain synchrony during laboratory tasks that required

dyads to coordinate visual attention (e.g., [3, 5, 8, 11]).

We speculate that stimulus properties (teaching style [13]),

individual differences (focus, engagement, and personality traits

[14]), and social dynamics (social closeness and social interac-

tion) each mediate attention at the neural level. This, in turn, af-

fects students’ neural entrainment to their surrounding sensory

input: the teacher, a video, or each other [24]. This ties directly

to behavioral evidence showing that people physically (and typi-

cally subconsciously) entrain to each other when engaging in

tasks that require joint attention (pupil dilation, gestures, walking;

e.g., [25]). More broadly, student-to-group synchrony as a func-

tion of shared attention follows directly from a range of electro-

physiological results showing that brain rhythms lock to the

rhythms of auditory and audiovisual input, which is amplified

when the input is attended [24, 26, 27].

To provide additional evidence that speaks to a shared atten-

tion account, we examined the relationship between student-to-

group synchrony and alpha band power—a well-characterized

index of attention [28, 29]. As predicted, a reduction in a stu-

dent’s alpha oscillatory activity was accompanied by an increase

in student-to-group alpha coherence (r = �0.64, p = 0.0044).

In sum, this study suggests that brain-to-brain synchrony in-

creases as shared attention modulates entrainment by ‘‘tuning’’

neural oscillations to the temporal structure of our surroundings.

Individuals who are less engaged with the stimulus show lower

brain-to-brain synchrony levels with the rest of the group (Fig-

ure 4), and people who have interacted face-to-face show

increased entrainment to each other.

Simultaneously recording EEG data from a group of teenagers

under naturalistic circumstances presents obvious challenges

when compared to laboratory-generated EEG experiments.

Although we could not attain the level of experimental rigor

that characterizes laboratory studies, we imposed as much

structured design as possible, while minimally limiting students

to engage with each other and with the class content, as they

would under normal circumstances. Second, we carried out

EEG recordings on 11 different days with the same series of

experimental conditions, essentially replicating the same exper-

iment 11 times on the same group of students (Figure 1A). Finally,

we carried out a series of experiments to verify that we obtained

interpretable recordings and that TI reliably indexes the synchro-

nization of the neural signal across individuals in both the labora-

tory and in a classroom context (Figure S2).

Conclusions
Werepeatedly recordedbrain activity fromagroupof 12 students

simultaneously as they engaged in natural classroom activities

and social interactions. Over the course of 11 different school

days distributed over one semester, we found that brain-to-

brain synchrony between students consistently predicted class
Current Biology 27, 1375–1380, May 8, 2017 1379



engagement and social dynamics. These findings suggest that

brain-to-brain synchrony is a sensitive marker that can predict

dynamic classroom interactions, and this relationship may be

driven by shared attention within the group. The approach we

describe provides a promising new avenue to investigate the

neuroscience of group interactions under ecologically natural

circumstances.
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Figure S1. EEG data collection equipment (Related to Figure 1) 
 
A. Hardware specifications of the emotiv EPOC EEG headset; B. Image of the emotiv EPOC headset (side 
view); C. Top-view of the electrode locations with those included in analysis marked in green (see text and 
S3 for details); D. Side-view of two sample students wearing the EEG headset. Green electrodes were 
included in the synchrony analysis and electrodes used as h-EOG and v-EOG proxies are marked in orange 
and grey respectively. E. Screenshot of the recording software, which was developed specifically for the 
purposes of the present study. F. Eye & head-motion artifact regression analysis: F-1. Correlation between 
v-EOG and bipolar EEG channels during UP-DOWN eye movements; F-2. Correlation between h-EOG 
and bipolar EEG channels during LEFT-RIGHT eye movements; F-3. Ratio of variance after vs. before 
regression; F-4. Ratio of variance after vs. before regression using different parts of the model.  



 

 
Figure S2. Control experiments (Related to Figures 2-3). 

A-right. 2-second raw EEG trace recorded from posterior electrodes of a sample student with eyes closed 
vs. eyes open; A-left. Average power spectra comparing eyes open vs. eyes closed combining two occipital 
channels at the group level (all 10 students); B. Event-related potentials to 250 Hz (blue) and 1000 Hz (red) 
tones recorded from a representative electrode (F4); C. Total Interdependence to tones, compared to 
teaching styles (See S2). D. Data from two joint attention control experiments, showing that joint action 
conditions yielded consistently higher pairwise TI values across the five pairs (pairs 1-3 are taking from 
Control Experiment 1; pairs 4-5 participated in control experiment 2, see text). E. For one representative 
day, student-to-group TI values were recomputed after regressing out head motion and residual eye artifacts 
(see text). No significant changes in student-to-group synchrony were observed. F. Data from 9 senior 
biology students at a separate high school also exhibited consistently higher student-to-group TI for video 
than lecture teaching styles, replicating the pattern reported in the study.  



 

 
 
Figure S3. Preprocessing and Analysis Pipeline (Related to Figures 2-3) 
A. Following band-pass filtering (0.5-35 Hz), the continuous EEG data was divided into 1-second epochs 
for artifact rejection. Epochs with movement and ocular artifacts were first rejected automatically 
according to a 100 µV rejection threshold, followed by manual rejection through visual inspection (B). C. 
Class content was presented using four teaching styles (with the exception of reading aloud, see text) on 11 
separate days to a group of 12 students (only 10 students were included in the analysis). D. Pairwise TI was 
computed for each student with each other student, on each day and for each teaching style. For each pair 
of students, only epochs that were accepted in both students (common epochs) were included in the 
analysis. E. TI was computed for each electrode pair, and then averaged across electrode pairs and across 
common epochs. F. For group TI, all available pairwise TI values were averaged to generate a single value 
per day and teaching style (also see Figure 1E(ii)); For student-to-group TI, each student’s available 
pairwise TI values were averaged to yield one single synchrony value for each student on each day and for 
each teaching style (also see Figure 1E(iii)). G. This value was then included in a multilevel model (10 
students for 11 days and 4 teaching styles) for analysis. 



 

 
Figure S4. Correlation scatterplots of individual difference and student ratings with student-to-group 
synchrony during class (Related to Figures 2 & 3). 

Individual student-to-group TI values for each student on each day for each variable under investigation: A. 
Post-Semester Ratings; B. Day-By-Day Ratings; C. Student Self-Reported Focus; D. Teacher Likeability; E 
Group Affinity; and F. Empathy. Statistics were conducted over these values, which are max-min 
normalized for presentation purposes.  
 
Table S1: Percentage of data accepted by teaching style, across days and subjects (Related to Figures 
2 and 3; Also see S3) 

Teaching Style % Epochs Accepted StdErr 
Reading Aloud 59 % 2 % 

Video 69 % 2 % 
Lecture 58 % 3 % 

Discussion 38 % 2 % 



 

Note that these values correspond to the % epochs accepted for individual students. Since the TI analysis is 
based on pairs of students, only epochs that were accepted in both students were included in the analysis 
(see Figure S3).  

 
Table S2: Post-hoc Tukey-Kramer test for dependent variables (Related to Figure 2) 
Highlighted rows mark statistically significant differences (p<0.05).   
 
Day-by-day student ratings 

Teaching style 
#1 

Teaching style 
#2 

Avg. diff. 
(#1 minus #2) 

StdErr 
of diff. P-val 

Discussion Lecture 1.79 0.57 0.054 
Discussion Reading 3.32 0.45 0.000 
Discussion Video 1.60 0.47 0.038 

Lecture Reading 1.53 0.55 0.089 
Lecture Video -0.19 0.43 0.969 
Reading Video -1.72 0.29 0.002 

 
Post-semester student ratings  

Teaching style 
#1 

Teaching style 
#2 

Avg. diff. 
(#1 minus #2) 

StdErr 
of diff. P-val 

Discussion Lecture 3.50 0.50 0.000 
Discussion Reading 4.10 0.48 0.000 
Discussion Video 1.50 0.54 0.086 

Lecture Reading 0.60 0.31 0.269 
Lecture Video -2.00 0.49 0.013 
Reading Video -2.60 0.40 0.001 

 
Group synchrony 

Teaching style 
#1 

Teaching style 
#2 

Avg. diff. 
(#1 minus #2) 

StdErr 
of diff. P-val 

Discussion Lecture 0.0112 0.0036 0.114 
Discussion Reading 0.0130 0.0060 0.278 
Discussion Video -0.0040 0.0040 0.747 

Lecture Reading 0.0018 0.0051 0.983 
Lecture Video -0.0152 0.0035 0.039 
Reading Video -0.0170 0.0061 0.150 

 
Student-to-group synchrony 

Teaching style 
#1 

Teaching style 
#2 

Avg. diff. 
(#1 minus #2) 

StdErr 
of diff. P-val 

Discussion Lecture 0.0099 0.0026 0.019 
Discussion Reading 0.0083 0.0032 0.109 
Discussion Video -0.0018 0.0032 0.940 

Lecture Reading -0.0016 0.0037 0.971 
Lecture Video -0.0117 0.0026 0.007 
Reading Video -0.0101 0.0047 0.203 

 
     

 
 
 
 



 

Supplemental Experimental Procedures 
 
S1. Detailed description of the procedure 
 
Overall procedure. The experiment took place between September 2014 and January 2015. We partnered 
with a senior biology class at a New York City high school. In September-October 2014, NYU 
investigators taught the students a neuroscience crash course, including the basics of signal processing and 
experimental design. Students were further familiarized with the EEG equipment. This was both 
educationally and practically motivated: each class was only 50 minutes, and the set-up time could be 
minimized by letting students help out with the application of the EEG headsets. From October 2014-
January 2015, we visited the class eleven times to record the students’ EEG as they engaged in semi-
regular classroom activities. Class content followed the regular biology curriculum. In the spring semester 
of 2015, students conducted their own EEG experiment, under the guidance of NYU researchers.  
For a video showing students setting up the emotiv EEG headsets and engaging in a series of test runs, see 
https://vimeo.com/212150060). 
 
Participants. The subjects of this study were 12 healthy high school students in their senior year (9 
females and 3 males, age 17-18) with no known history of neurological disease. Students were enrolled in 
an Advanced Placement Biology class. All participants provided written informed consent after receiving a 
detailed explanation of the experimental procedures. The Institutional Review Board of New York 
University approved all experimental procedures for this study. Two girls were excluded from EEG data 
analysis because they consistently had poor data quality due to their hair volume and head shape.  
 
Set-up. During setup, NYU researchers helped students (and students helped each other) fit the EEG 
headsets, and students filled out a pre-class questionnaire. 
 
Teaching styles. As can be seen in Figure 1, the classroom activities included four main teaching styles. 
For three minutes, the teacher read to the students from his lecture notes. Next, students watched a two-
minute instructional video related to the class’ topic. The teacher then proceeded to lecture to the students 
for three minutes. Finally, students engaged in a group discussion about the class topic for five minutes. 
The Reading Aloud activity was terminated after five classes because it did not serve the students’ learning 
goals. Video, lecture, and discussion were included in all 11 recording sessions. Data analyses were 
performed for each student on each day and teaching style separately.  
 
Baseline activities. Three different baseline activities were conducted at the beginning and end of each 
class: facing the wall (2 minutes; post-class recording was skipped for classes 2-4 and 8 due to time 
constraints), facing the group (2 minutes for classes 4, 6, 8, and 10), or facing each other in pairs (2 minutes 
before class for classes 5, 7, 9, and 11). Pairs were determined each class based on where students sat in 
class (See Figure 3C for an example class configuration), which was randomized each time: The 
experimenters, and not the students, determined the seat assignment. During these baseline activities, 
students were instructed to sit still, refrain from talking, and focus on the wall, the group, or each other.  
 
Questionnaires. Prior to the eleven EEG-recording sessions, information about students’ social traits was 
collected, including group affinity (see Figure 2E) and the Personal Distress Scale of the Interpersonal 
Reactivity Index as an index of empathy ([S1, S2]; Figure 2F)).  
Second, students filled out pre- and post-class questionnaires (during nine out of eleven classes) asking 
them how focused they were (student focus; Figure 2F) and how much they enjoyed different segments of 
class (day-by-day ratings; Figure 2A) on a scale from 1 to 7 (max-min normalized in all figures for 
presentation purposes). These questionnaires also included a number of items proposed by the students 
(e.g., asking how hungry or caffeinated they were) that were not analyzed for the purposes of the present 
study (also see Analysis Strategy below).  
Third, after the completion of all eleven EEG-recording sessions, students filled out one additional 
questionnaire, again asking them how much they enjoyed the four teaching styles overall (post-semester 
ratings; Figure 2A), how much they liked the teacher (teacher likeability; Figure 2E), and how close they 
felt to each of their peers (closeness ratings; Figure 3C-D).  
 



 

S2. Data collection & preprocessing 
 
EEG data collection. We recorded simultaneous EEG activity from 12 students in their regular classroom 
as they were following their regular AP Biology curriculum (adapted to the teaching formats indicated in 
Figure 1) during 11 classes, which took place at 8:30am, 10:40am, or 2:20pm (EEG data available online at 
https://osf.io/nsuhj). Students had been made aware of movement artifacts during the neuroscience crash-
course they received prior to the recording sessions and were instructed to minimize overt movement 
during the EEG recordings. We used 14-electrode emotiv EPOC wireless EEG headsets (mastoid reference 
locations), paired with custom software built using the OpenFrameworks software package 
(www.openframeworks.com) capable of recording EEG data from twelve students simultaneously onto a 
single computer (MacBook Pro). See Figure S1A for the emotiv EPOC hardware specifications, Figure 
S1B for a picture of the headset, and Figure S1E for a screenshot of the recording software Graphical User 
Interface.  
 
EEG data quality. Figure S1C shows a schematic top-view of the electrode locations, with the electrodes 
included for analysis marked in green. Although electrode locations are mapped onto a standard 10/20 
layout, it is important to note that the actual electrode placement was inconsistent across students since by 
design the headset was placed slightly differently on each student’s head (Figure S1D). Therefore, we did 
not differentiate between electrodes in our analysis (see below): For each subject pair, the unit of analysis 
was the TI computed for each electrode pair (one from each subject, marked green in Figure S1C) and then 
averaged across all available electrode pairs between subjects (see Electrode Selection and Figure S3E). 
Figure S3A-B show raw EEG traces from a representative headset recorded on a typical recording day for 
all 14 electrodes.  
 
Control Experiments.  
We carried out multiple control experiments and ‘sanity checks’ to verify that (a) our recordings indeed 
consisted of reliable, interpretable EEG data (Figure S1F, S2A-B), (b) Total Interdependence is a valid 
method to capture synchronized neural activity across students as a function of shared attention (Figure 
S2C-E), and (d) our findings are not only replicable across days, but also across groups and schools (Figure 
S2F). These are discussed in turn below. 
 
S1F. Regressing out the effect of eye and head movements from the EEG data. When inter-brain 
synchrony is computed from EEG measurements during naturalistic experimental conditions, one of the 
main questions that arise is whether it is driven by synchronous non-brain signals present in the EEG 
measurements. In the context of the current experiment, where students were attending to various forms of 
classroom interactions, some of such non-brain sources could be eye or head movements modulated by the 
stimuli that the students were presented with or from the surrounding environment. For example, the 
estimated interbrain synchrony could be driven by synchronous eye movements between students 
simultaneously tracking salient moving stimuli. Similar non-brain-related synchrony could result from 
synchronous head movements, driven by the environment or presented stimuli, which stress or strain 
similar muscles across students and create similar artifacts in the EEG recordings. In order to estimate the 
effect of eye and head movements in the inter-brain synchrony, four explanatory variables representing 
these artifacts were regressed out of the EEG recordings and the TI metric was recomputed. 
Head movements were assessed using a two-axis gyroscope built in the emotiv EEG headset and sampled 
synchronously to the EEG channels. The output of the gyroscope provides two variables, 𝐺! and 𝐺!, 
representing angular velocity with a fixed resolution (1 °/𝑠) around the 𝑋 and 𝑌 axes respectively. The 𝑋 -
axis is the “horizontal axis” running through the bases of the headset arm, over the ears of the subject 
(Figure S1B). The 𝑌-axis is the “vertical axis” running along the azimuthal direction in right angles to the 
headset arm and the X-axis. These two variables were used as regressors in order to remove the effect of 
head movements from the EEG data. Because the gyroscopes in the emotiv headset have a fixed resolution 
of 1 °/𝑠, the data is not smooth but it has a step-wise behavior. In order to avoid contaminating the EEG 
data with such step-wise patterns after the regression, the gyroscope variables were low-pass filtered at 30 
Hz. This filtering converted the step-wise values into smooth and continuous variables suitable for 
regression of the EEG data. 
Eye movements are typically assessed using Electro-oculography(EOG), with bipolar electrodes placed 
over and below the eye, for detecting vertical eye movements(v-EOG), and on the left and right outer 
canthi for horizontal eye movements (h-EOG). Since no bipolar EOG electrodes were deployed in the 
current experiment, two proxy EOG variables were devised from the recorded EEG channels. From the 



 

spatial layout of the emotiv headset electrodes (see Figure S1C-D), it is evident that the closest proxy to a 
h-EOG measurement is the difference between the electrodes F7 and F8. As these electrodes are located 
almost on a horizontal line in parallel to horizontal eyes movements and are the nearest electrodes to the 
eye muscles, it was expected that they would be mostly sensitive to horizontal and much less sensitive to 
vertical eye movements. The most suitable identified candidates for a v-EOG proxy variable were the 
bipolar derivations AF4-F8 and AF3-F7. As these bipolar derivations are identical with respect to the eye in 
measurement, only one of them was selected for the rest of the analysis, namely the derivation AF4-F8 
(Figure S1F-1). The spatial locations of the electrodes in this proxy v-EOG variable are significantly 
different from what would be expected for an actual v-EOG measurement. However, it is expected that this 
derivation can still capture vertical eye movements. This is based on the fact that the electric field 
diminishes with the inverse of the square of distance. Thus, although the electric field measurements from 
vertical eye movements will have the same polarity in electrodes AF4 and F8 (they are both located above 
the eye muscle), the field in F8 will be much stronger than in electrode AF4. As a result, the difference will 
still capture the electric field from the vertical eye movements. Since the electrodes F8 and AF4 also have a 
horizontal offset, we expected that their bipolar derivation would also capture horizontal eye movements. 
Using single EEG electrodes as proxies to v-EOG and h-EOG was not considered a possible solution 
because single electrodes carry a mixture of electric fields from the entire brain, and regressing them out 
would remove a large amount of brain activity. Bipolar derivations of electrodes, close to the eyes like the 
ones described above, eliminate such common signals and are more sensitive to strong local electric field 
gradients from the eyes. 
In order to test the suitability of the proxy EOG variables F7-F8 and AF4-F8, two surrogate experiments 
were performed with a single participant, during which EEG (with an emotiv headset) and EOG (using 
separate electrodes) were recorded simultaneously. In the first surrogate experiment, the participant was 
instructed to move her eyes up and down for one minute. In the second surrogate experiment, the 
participant was instructed to move her eyes left and right, also for one minute. The electrodes for the actual 
v-EOG were placed above and below the right eye. The electrodes for the actual h-EOG were placed on the 
outer canthi of the eyes. Both the EOG and EEG signals were pass-band filtered from 1 to 10 Hz which 
typically contains the main envelope of eye movement artifacts (High gamma band artifacts from eye 
movements were not accessible as the effective frequency range of the emotiv headset goes only up to 43 
Hz [S3]. First, the Pearson correlation coefficient between v-EOG channels and the proxy EOG bipolar 
variables, F7-F8 and AF4-F8, was computed during up-down eye movements (surrogate experiment 1). As 
can be seen in figure S1F-1 the bipolar vertical proxy AF4-F8 had a much higher correlation with the actual 
v-EOG channel and confirmed the expectation that is a suitable candidate for capturing vertical eye 
movements. Similarly, the correlation between the actual h-EOG and the two proxy variables was 
computed during left-right eye movements, shown in figure S1-A2. In this case the horizontal proxy 
variable F7–F8, as expected, had the highest correlation and this confirmed its selection for capturing 
horizontal eye movements. Here it must be mentioned that the correlation of v-EOG with AF4-F8, 
(0.749, 𝑝 < 10!!"), was notably higher than the correlation of h-EOG with F7-F8 (0.452, 𝑝 < 10!!"). One 
possible explanation for this higher correlation is that, in addition to vertical eye movements, the bipolar 
variable AF4-F8 is also sensitive to eye blinks, which create strong electric fields. These additional events 
increase the correlation with the actual v-EOG signal. The variables h-EOG and F7-F8 are much less 
sensitive to eye blinks.  

Together, the above surrogate experiments verified that the bipolar EEG variables F7-F8 and AF4-
F8 can be used as proxies to h-EOG and v-EOG and can be used to regress residual eye-movement related 
artifacts out of the EEG data. For the scope of the regression analysis presented below the proxy variable 
F7-F8 will be termed 𝑃! and AF4-F8 will be termed 𝑃!. In addition to these two variables, the two 
gyroscope output variables described at the beginning of this session were used as regressors of the EEG 
channels in a multivariate linear model. 

In the linear multivariate approach described below, instead of building a model directly on the 
EEG data, its principal components were used. This is also the case for the two proxy EOG regressor 
variables and the two gyroscope variables. The reason for using Principal Component Analysis (PCA) here 
is that there is a high degree of collinearity between the EEG channels, between the two proxy regressors 
and to a much lesser degree between the gyroscope regressors. By applying PCA on the data and on each 
group of regressors, collinearity within them is removed. The validity of similar modeling approaches, 
based on orthogonal decompositions of correlated measurements into their uncorrelated components, has 
already been demonstrated in the analysis of EEG and MEG data [S4, S5].  
The linear regression has the form:  

𝑌!"# = 𝐴 + 𝐵 ∙ 𝑋 + 𝐸!"#  



 

where  𝑌!"# are the principal components of the EEG data 𝑌. Each of the 14 rows corresponds to a principal 
component and each column to a sample.    

𝑌!"# = 𝐶 ∙ 𝑌 
𝐶  is the principal component coefficient matrix. It maps EEG channels to principal components. Each row 
corresponds to a principal component and each column to an EEG channel. 

𝑋 =
𝐺!"#
𝑃!"#

   

𝑋 contains the 2 groups of regressor variables. 
𝐺!"# contains the principal components of the two gyroscope variables 𝐺! and 𝐺!. 
𝑃!"# contains the principal components of the proxy EOG variables 𝑃! and 𝑃!. 
𝐴 contains the costant terms of the linear model for each of the EEG channels. 
𝐵 contains the slope coefficients for each of the regressor variables and each modelled EEG channel. Each 
row corresponds to a channel and each column to a regressor. 
𝐸!"# contains the residual EEG data that could not be modelled by the given regressors. This residual is at 
the principal component space. Each row corresponds to a principal component and each column to a 
sample. This residual data can be then back-projected to the EEG sensor space simply by multiplying it 
with the inverse of the principal component coefficient matrix. 

𝐸 =  𝐶!! ∙ 𝐸!"# 
𝐸 is the final residual of the EEG data after the modulation by the regressor variables has been removed. 
This is the residual data, based on which the inter-brain synchrony (TI) was re-computed and compared to 
the originally calculated metric before the regression.  

Prior to applying the above modeling to the data, the EEG data was high-pass filtered at 0.5 Hz 
and demeaned. The gyroscope data was low-pass filtered at 30 Hz (for converting its step-wise fluctuations 
to continuous) and demeaned. Before the data was entered into PCA and the multivariate modeling process, 
all data segments flagged as noisy were removed (exactly the same as in the data used for the original TI 
computation). The multivariate model was estimated by the MATLAB “mvregress” routine, using the 
covariance-weighted(“cwls”) least-squares method [S6, S7] . Although initially the maximum-likelihood 
method was employed, the multivariate distribution of the model residuals was not normal, as indicated by 
the Royston's Multivariate Normality Test, and so the least-squares method was finally used [S8, S9]. 

The above modeling process was applied to each student’s recorded data during each of 11 
different experimental sessions spanning three days (reading, video, lecture and discussion for each day 
except the third day, for which reading aloud data was not available). In total, there were 90 EEG datasets 
for which a multivariate model was estimated and the modulation of eye and head movements was 
regressed out, leaving a residual dataset.  

In order to assess the effect of the regression on the original data, the ratio of the variance after 
versus before the regression was estimated for each of the 90 datasets and each sensor. Figure S1F-3 
presents the mean variance ratio values across for each EEG sensor. The gray-shaded area represents the 
standard error of the mean (SE) across all the used datasets. The three channels with the highest variance 
reduction were F8, F7 and AF4. This was expected, as they are the channels that constructed the two proxy 
EOG regressors. Channel F8, which was a constituent of both regressors, exhibited the highest variance 
reduction. An interesting fact is that the variance reduction in channel AF3 was not as high as for its mirror 
channel AF4. This probably is due to the fact that the vertical proxy variable 𝑃! captured not only vertical 
eye movements but also local brain activity on the right side, which was not present in the symmetric 
location on the left side of the head (in contrast to what should be expected in the case of eye movements). 
This is also supported by the fact that the variance reduction for lateral right side sensors F4, FC6, T8 and 
P8 was higher than for their symmetric left-side sensors (F3, FC5, T7 and P7). Nevertheless, even these 
sensors showed significant variance reduction, between 10.3% and 16.5%. In overall it must be noted that 
the variance reduction showed a descending gradient from anterior towards posterior and from lateral 
towards medial EEG sensors, with occipital and parietal sensors showing the lowest variance reduction.   

The final assessment of the effect of regression on the data was to examine how much of the 
variance reduction was attributed to eye and how much to head movements, as represented by the regressor 
variables. In order to pursue this, for each of the 90 datasets the model coefficients for the gyroscope 
regressor variables, representing head movements, were omitted. Based on this reduced model, the residual 
and the variance reduction ratio for it were computed. This ratio represented how much of eye movement 
artifacts were present in the original EEG data. The exact same procedure was then repeated but with 
omitting the eye movement regressors and keeping the head-movement ones. This indicated how much of 
head movement artifacts were present in the original EEG data. These results are shown in figure S1F-4. It 



 

is obvious that most of the variance reduction is attributed to the eye-movement regressors (blue line). The 
variance reduction from the gyroscope regressors (red) remained low, below 5%, and quite evenly 
distributed across the sensor array. This indicates that head movements during the experimental sessions 
were limited, and the EEG data was not contaminated by accompanying artifacts such as neck muscle and 
sensor movement artifacts. On the same figure the variance ratio from the full model is presented again 
(black line), for comparison purposes, which as expected is equal to 1 minus the sum of the variance ratios 
from the two reduced models.  
 
In summary, the procedures described so far in this section showed that: 
- Eye movement artifacts in the data can be captured using proxy EOG variables from frontal EEG 

channels.  
- After regressing out of the EEG data the eye and head movement artifacts, the residual variance was 

significantly reduced in all sensors, with the least reduction in occipital and parietal areas. 
- Most of this variance reduction was due to the regressors that represented eye movements. (This 

showed that students followed instructions and refrained from large head movements during the 
experiment).  

After the above evaluation was applied to each dataset, the resulting EEG residual for one representative 
day was used in the computation of student-to-group synchrony (TI), in place of the originally used non-
regressed data. This analysis is discussed below and results are shown in Figure S2E.  
 
S2A. Data quality assessment of the emotiv system. As a rudimentary ‘sanity check’ test of the data 
quality of the emotiv system, EEG was contrasted between eyes-open (EO) and eyes-closed (EC; 2 minutes 
each). Figure S2A-right shows a sample 2-seconds EEG trace recorded from a posterior electrode of an 
example subject, comparing eyes-open vs. eyes-open resting. As clearly visible in the raw EEG from the 
sample subject, EC resting was accompanied by large alpha rhythm, which was significantly attenuated 
during EO resting. Figure S2A-left shows power spectra averaged over all students (data obtained on the 
first recording day). EO-EC power difference in the alpha band is again apparent. This observation 
confirms a well-established phenomenon sometimes referred to as alpha blocking [S9].  
 
S2B. Two-tone ERPs. In a second test, students were instructed to passively listen to 100 instances of a 
250 Hz tone and 100 instances of a 1000 Hz tone alternating at a stimulus-onset-asynchrony (SOA) of 1000 
ms (tone duration 400 ms; played via an external speaker that was set up on the teacher’s desk). The EEG 
signals were epoched between -200 ms before the onset of each stimulus and 800 ms after the onset of the 
same stimulus. Figure S2B shows a canonical ERP response to the two tones recorded from electrode 
location F4: a clear N1-P2 complex is visible, with the 250 Hz tones (P2 peak: M=194.5, SD=13.4) 
generating a slightly earlier peak latency in both components than the 1000 Hz (P2 peak: M=218.5, 
SD=13.4) tones (t(3)=-3.67, p=0.017; data from channels F3 and F4 was included in this analysis). This 
observation is again consistent with prior reports using well-established equipment [S10]. 
 
S2C. Validating TI as a measure of shared stimulus entrainment. To validate the TI measure, we first 
computed student-to-group Total Interdependence for each student who participated in the tone experiment 
(combining the 250 Hz and 1000 Hz stimuli). If Total Interdependence reflects (attention-modulated) 
entrainment to external stimuli, as we argue in Figure 4, TI values should be comparable to those teaching 
styles with a single-source auditory input, namely when the teacher was either reading aloud or lecturing. 
As can be seen in Figure S2C, student-to-group TI values in response to tones were indeed numerically 
similar to those obtained during Lecture and Reading Aloud teaching styles (note that for the Tones, we 
only have available data from five students, recorded once, while the Lecture and Reading Aloud data is 
averaged across multiple sessions). For additional discussions of the EEG data collected by the emotiv 
system, including comparisons to other EEG systems, see [S11, S12]. 
 
S2D. Validating TI as a measure of joint attention. In one control experiment, EEG data of three pairs of 
participants were collected from a finger-moving experiment, replicating [S13]. In the baseline condition, 
two subjects sat face-to-face while eye contact was not mandatory. In the joint action session, one subject 
was randomly selected to serve as a leader whose finger movements were tracked and mimicked by the 
follower, and then they switched their roles for another session. Both baseline and joint action session last 2 
minutes.  



 

A second control experiment compared collaborative vs. competitive contexts in the same task. As 
mentioned previously, following the conclusion of data collection, in the spring semester of 2015, the 
students conducted their own EEG experiment, under the guidance of NYU researchers. In this experiment, 
students simultaneously recorded EEG from two subjects during a block design task. Subjects had to 
rearrange colored blocks to match a pattern. The two subjects were either competing against each other or 
collaborating with each other. In the competition condition, each subject worked independently, trying to 
complete the task ahead of the other subject. In the collaboration condition, the two subjects worked 
together on the same puzzle, trying to complete the task together at the shortest time.   
 
Together, these findings validate Total Interdependence as a valid method to capture differences in 
synchrony between dyads as a function of joint synchrony, in line with findings showing an increase in 
brain-to-brain synchrony during laboratory tasks that required dyads to coordinate visual attention (e.g., 
[S14, S15, S16, S17]). 
 
S2E. Validating TI as a neural measure of synchrony as a function of shared attention. To ensure that 
synchrony values were not in part explained by head motion or residual eye movement, we reanalyzed data 
for one recording day after regressing out residual motion artifacts (details are described above). We 
reanalyzed data for Day 5, selected because of two criteria: (1) all four teaching styles were carried out on 
that day, (2) most TI values were available for that day relative to other days. As can be seen in Figure 
S2G, no consistent differences between the original and reanalyzed data were observed across or within 
teaching styles (t(1,30) = 0.8602, p = .38). In addition, the difference in student-to-group synchrony for 
Video and Discussion teaching styles on the one hand and Reading Aloud and Lecture styles on the other 
were virtually identical (Original: t(1,11) = 3.98, p = 0.0021, difference: 0.112; Reanalyzed: t(1,11) = 3.91, 
p = .0024, difference: 0.108). Thus, we can conclude that estimated interbrain synchrony was not 
significantly driven by synchronous eye or head movements between participants, something that would be 
manifested as a reliable TI reduction when the regressed data was used.  
 
S2F. Replicating classroom student-to-group TI in a second school. To assess the robustness of our 
findings across time and contexts, in addition to replicating the same experiment 11 times, we replicated 
our study at a different high school. Figure 2SF shows student-to-group TI values for 9 senior biology 
students of a second New York City high school receiving the regular class content either via video or 
through their teacher lecturing (we only included these two teaching styles because these teaching styles 
exhibited the cleanest data in the first group of students). Student-to-group TI was significantly higher for 
video than lecture sessions (F(1,5) = 21.59, p < .006), replicating findings from the first group of students 
reported in the rest of this paper.  
 
S3. Analysis. Quantifying brain-to-brain synchrony. 
 
Figure S3 summarizes our preprocessing and analysis procedure. 
 
Step 1: EEG preprocessing.  
First, EEG segments corresponding to each teaching style were extracted. The signals were then band-pass 
filtered between 0.5 Hz and 35 Hz, and divided into 1-second epochs for artifact rejection and EEG 
analysis. Epochs with large movement artifacts were removed by setting a rejection threshold in EEGLAB 
[S18] of +/- 100 µV for any of the 14 channels at any time within the epoch (Figure S3A). Then, epochs 
with blinks and muscle artifacts were manually removed by visually inspecting each of approximately 
52800 epochs of data collected across days, students, and teaching styles (Figure S3B). Any participant for 
whom more than 50 percent of epochs had to be excluded based on these criteria was excluded from 
analysis for that particular teaching style. Average acceptance rates for each teaching style (before 
excluding students) are included in Table S1.  
Although the numbers in Table S1 may seem low, it is important to emphasize that since we were in a 
naturalistic environment, we were unable to minimize subjects’ eye movements and body movements, 
resulting in a much larger proportion of artifacts than those observed in conventional laboratory or virtual-
reality-based experiments.  
After the removal of eye-movement and other movement artifacts, those channels whose average amplitude 
exceeded the mean channel amplitude by four standard deviation were excluded from analysis, and this 
process was iterated three times [S19]. 
 



 

Step 2: Computing brain-to-brain synchrony: Total Interdependence (TI) 
 
To compute brain-to-brain synchrony between students for each teaching style on each day and each 
student pair (Figure S3C), we employed the method of total interdependence (TI; S20) to compute brain-
to-brain synchrony among multiple students during a given teaching style. Total Interdependence is defined 
in terms of spectral coherence. In this study spectral coherence was computed based on the Welch method 
which, according to [S21], controls bias in coherence estimation.  
For a pair of simultaneously acquired time series: (𝑥!, 𝑦!),  (𝑥!, 𝑦!),  (𝑥!, 𝑦!), … , (𝑥!, 𝑦!), TI as defined 
by [S22] was computed according to: 
𝑇𝐼!,! = − !

!!
𝑙𝑛 1 − 𝐶!"! 𝜆 𝑑𝜆!

!! ,                                                (1) 
where 𝐶!" 𝜆  is the coherence between the two signals, 𝑥 and 𝑦, at frequency 𝑓 = 𝜆/2𝜋. For two Gaussian 
processes, this formula was shown to measure the total amount of mutual information between them. [S23] 
further demonstrated that TI captures the total linear relationship between 𝑥 and 𝑦 time series. Numerically, 
for a given sampling frequency𝑓!, Eq. (1) can be recast into an implementable form: 
𝑇𝐼!,! = − !

!!
𝑙𝑛 1 − 𝐶!"! 𝑖Δ𝑓 Δ𝑓!!!

!!! ,                                          (2) 

where Δ𝑓 = !!
! !!!

 is the frequency resolution and 𝑁 is the number of desired frequency points in the 
interval between 0 and the Nyquist frequency 𝑓!/2. 
 
In this study, TI was estimated by computing the magnitude squared coherence using the Welch method for 
6 one-on-one paired combinations of electrodes from two subjects (Figure 1D and S3E) for which data was 
most often free of noise across students (also see above): two occipital channels (O1, O2), two frontal 
channels (F3, F4), and two parietal channels (P7, P8) were included for analysis (excluding any electrodes 
that may have been rejected following the procedure outlined above). 
 
The magnitude squared coherence was calculated for the frequency range between 1 to 20 Hz by tapering 
non-overlapping 1s epochs (zero-padded [S24, S25] to 4s) with a Hanning window and performing the 
Fourier transform with 0.25 Hz frequency resolution. A minimum of 60 artifact-free common epochs for 
paired subjects was used for analysis. The common epochs were selected by taking the overlapping epochs 
that were accepted with the aforementioned preprocessing procedure between pairwise subjects for each 
teaching style on each day. For example, for the Lecture session on one recording day, epochs 1-10 and 12-
18 were accepted for student 1, and 2-13 and 16-18 were accepted for student 2, then common epochs for 
student 1 and 2 were selected to be 2-10, 12, 13, 16-18 (and so on) which were next used for TI 
computation. This is illustrated in Figure S3D.	 
TI for one pair of subjects was obtained by averaging TI values across all paired electrodes (Figure S3E) 
and student-to-group TI was obtained by averaging TI values over all possible pairwise combinations 
between that one student and the rest of the group (Figure S3F). These values were then entered in a 
multilevel model for statistical analysis (Figure S3G; see Analysis Strategy below).  
 
Alpha coherence was computed by summing the coherence values within 8-12 Hz. Student-to-group TI for 
student i was obtained by averaging all pairwise TI values where student i was a member of the dyad (i.e., 
𝑖, 𝑗 , 𝑖 ≠ 𝑗, where i and j are indices of available students in each teaching strategy on each day; Figure 

S3E).Student-to-group alpha coherence was obtained by using the same averaging procedure as described 
for student-to-group TI (Figure S3E-G).  Both TI and alpha band coherence values were normalized across 
conditions and recordings using a min-max transformation. Group alpha coherence explains 33 % of group 
TI (R2 = .33). 
 
S4. Analysis Strategy. In order to test whether student ratings (day-to-day ratings and post-semester 
ratings) and brain synchrony (student-to-group synchrony and group synchrony) varied significantly 
between teaching styles, repeated-measures two-way ANOVAs were conducted with teaching style and day 
of recording as main factors. In the case of post-semester student ratings, only teaching style was 
considered as a factor (as these ratings were obtained only once). The ANOVAs were followed by post-hoc 
Tukey-Kramer tests to assess the significance of pairwise comparisons (e.g. lecture compared to video; See 
Tables S2).  
 
Next, to investigate the relationship between student-to-group TI and questionnaire metrics across days we 
created multilevel models [S26] with days nested within students. Multilevel models were implemented in 



 

the SAS PROC MIXED procedure (all random effect were modeled wherever possible; [S27]). To assess 
the independent contribution of the stimulus nature (teaching style) and individual factors respectively 
(listed below), we first created a binary factor Teaching Style (stimulus attribute) by reorganizing the data 
into two main ‘conditions’, grouping together Discussion and Video sessions on the one hand, and Reading 
Aloud and Lecture sessions on the other (previous analyses showed no difference between students ratings 
of these styles). As shown in Figure 2B, there was a main effect of Teaching Style on student-to-group 
synchrony, with significantly lower student-to-group TI for Reading Aloud and Lecture sessions than 
Discussion and Video sessions (F(1,9) = 20.90, p = .0013).  
We then conducted a series of repeated measures analyses on student-to-group TI: Teaching Style & Post-
Semester Ratings, Teaching Style & Self-Reported Focus, Teaching Style & Group Affinity, Teaching 
Style & Empathy (see the main text for statistics).  
Finally, to assess any effects of the class configuration on TI, we ran a model comparing pairwise TI values 
and pairwise closeness ratings across three categories: pairs of students that were seated next to each other 
and had engaged in eye contact prior to class (adjacent + face-to-face pairs), students who sat next to each 
other but had not engaged in eye contact before class (adjacent + no face-to-face pairs), and students who 
were not seated next to each other (non-adjacent pairs; see main text and S1 above).  
 
As already mentioned above, we collected a number of exploratory individual measures via questionnaires, 
many of which were designed by the student participants rather than the experimenters (e.g., “How much 
caffeine did you consume?” “How distracted are you by school work?”). These were largely for 
educational, rather than scientific purposes (i.e., to educate students about how to construct their own 
hypotheses; see SI for more information). To help minimize Type I errors, we focused on the subset of 
metrics mentioned above: self-reported focus, group affinity, empathy, and social closeness. These are 
listed and motivated in the Analysis Plan below.  
 
Analysis Plan 
 
Analysis Motivation/Research Question 
Main effect of stimulus & ratings: group vs. individual & day-by-day vs. semester 
(1) 2-way repeated measures ANOVAs on 

day-by-day & post-semester ratings 
planned How do students’ self-reports of the teaching 

styles vary by condition?  
(2) 2-way repeated measures ANOVAs on 

group TI & student-to-group TI  
planned  Does a group metric or an individual metric 

better capture differences in our data? 
(3) correlations: student ratings x TI  follow-

ups 
Are student ratings and brain-to-brain synchrony 
related? [S28] 

 

Independent effects of stimulus vs. individual differences on brain-to-brain synchrony:  
2 ‘state’ variables and 2 ‘trait’ variables 
Individual ‘state’ differences 
(1) repeated-measures multilevel 

regression analysis assessing effects 
of Teaching Style x ratings on 
student-to-group TI 

planned Does student engagement with the material 
independently predict student-to-group synchrony, 
above and beyond the nature of the stimulus 
(teaching style)?  

(2) repeated-measures multilevel 
regression analysis assessing effects 
of Teaching Style x focus on student-
to-group TI 

planned Does focus, a proxy for attention [S29] 
independently predict student-to-group synchrony?  

Individual ‘trait’ differences 
(1) repeated-measures multilevel 

regression analysis assessing effects 
of Teaching Style x group affinity on 
student-to-group TI 

planned Do students with a natural affinity for joining and 
affiliating with groups experience greater neural 
synchrony? 

(2) repeated-measures multilevel 
regression analysis assessing effects 
of Teaching Style x empathy on 
student-to-group TI 

planned Do student with greater empathy (indexed by the 
Personal Distress Scale [S1]) experience greater 
neural synchrony with the rest of the group?  



 

 

Effects of co-presence: teacher likeability and student closeness (joint attention vs. class configuration) 
Teacher likeability 

(1) teacher likeability x student-to-group TI 
correlation 

planned Are student evaluations of their teacher 
associated with greater neural synchrony? 

Student closeness 

(1) 1-Way ANOVA comparing pairwise TI for 
adjacent + face-to-face pairs, adjacent no 
face-to-face pairs, and non-adjacent pairs 

follow-
up 

Does co-presence (class configuration) or 
social interaction (face-to-face baseline) 
better predict synchrony during class? 

(2) correlation: student closeness x pairwise TI 
for adjacent + face-to-face pairs   

planned Does face-to-face interaction (eye contact) 
modulate whether closeness and synchrony 
are correlated during class? 

(3) correlation: student closeness x pairwise TI 
for adjacent + not face-to-face pairs  

follow-
up 

Does physical proximity modulate whether 
closeness and synchrony are correlated during 
class? 

(4) correlation: student closeness x pairwise TI 
for non-adjacent pairs  

follow-
up 

Are closeness and synchrony are correlated 
during class irrespective of direct interaction 
or physical proximity? 

 
Post-hoc attention analysis 

(1) correlation: alpha coherence x alpha power 
correlation 

follow-
up 

This was a post-hoc analysis providing 
additional, indirect evidence in support of an 
attention account of student-to-group 
synchrony.  
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